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Abstract

In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical

simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or

by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991)

1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving

convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed

volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due

to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial

integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving

convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a

scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing

of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving

the Navier–Stokes equations. Consequently, we first derive and test a strictly variance-conserving space–time discret-

ization for the convection term in the convection–diffusion equation. Our starting point is the variance-conserving

spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In

terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving

schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and

Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409–287].
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1. Introduction

Natural water flows appear in many civil-engineering applications and these free-surface flows are
nearly two-dimensional. For these flows, we aim at simulating the largest and energetic horizontal
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turbulence structures through a procedure that we call horizontal large eddy simulation (HLES), see

[7].

Compared to the forcing of the mean flow, the interaction between turbulence structures at different
length scales is a slow and dynamically weak process in which the conservation of energy, while being

redistributed among wave numbers, is essential. It is our prime motivation to focus on energy-conserving

schemes while we acknowledge that, e.g. momentum conservation or treatment of shocks or bores may be

more important in other applications.

Presently, for the simulation of the free-surface flows mentioned above, we apply our general-purpose

shallow-water solver that is based on ADI temporal integration combining explicit second-order central

and implicit second- or third-order upwind schemes for the advection or convection operators. These

schemes have good robustness properties but lower odd-order upwind discretizations are known to be
dissipative, as experienced in [2] and particularly exhibited in frequency spectra in [7]. The vast experience

of others in DNS and LES recommends the application of discrete convection operators that conserve

kinetic energy. The latter is the objective of this paper.

Below we motivate why we start with deriving variance-conserving convection schemes and end with

kinetic-energy conserving advection scheme.

Variance is defined as the quadratic quantity of a scalar, 1
2
/2. It can be considered as amodel for the kinetic

energy 1
2
~u2ð¼ 1

2
u2 þ 1

2
v2 þ 1

2
w2Þ, since conservation of variance is equivalent to conservation of the square of

each of the Cartesian velocity components, 1
2
u2, 1

2
v2 and 1

2
w2, which guarantees the conservation of kinetic

energy. For simplicity, clarity in notation aswell as for a clear definition of essential time levels, we consider the

convectionof a scalar yielding a clear notational distinctionbetween theflux termsand the convected quantity.

This paper derives a numerical scheme for the convection term in the convection–diffusion equation, that

is variance-conserving in space as well as in time. In earlier publications – e.g. [1,4,5] – a spatially, but not

temporally variance-conserving scheme for the convection terms is derived and that scheme is called skew-

symmetric [1,3]. When this scheme is used in inviscid flow simulations, it still violates the conservation of

kinetic energy, and in [5] this violation is attributed to the time-stepping method. Another complication is

that Morinishi et al. [5] examined the convection of velocity, without making a notational distinction
between the flux terms (velocity) and the convected quantity (velocity). This causes ambiguities in the in-

terpretation of the time integration and the time levels of the various quantities in the discrete equations. By

bringing into light the difference between the flux terms and the convected quantity, we designed another

procedure for obtaining a numerical scheme for the convection terms that conserves variance in space as

well as in time. For clarity reasons, we confine ourselves to the two-dimensional case. The three-dimen-

sional extension of our scheme is a simple extension of the two-dimensional one.
2. Definition of various continuous forms of the convection operator

Analog to the definitions in [5], this section repeats three different continuous representations for the

convection operator.

The linear convection–diffusion equation can be written symbolically as

o/
ot

þ ðConvÞ ¼ ðDiff Þ ð2:1Þ

with

ðDiff Þ � jr2/; ð2:2Þ

where / is the scalar and j is the diffusion coefficient. In Eq. (2.1), (Conv) implies a generic form of the

convection operator as defined subsequently.
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The linear term (Conv) is part of the material derivative of / and expressed in two-dimensional Cartesian

co-ordinates (x; y) with (u; v) velocity components it reads

ðConvÞ ) ðAdvÞ � u
o/
ox

þ v
o/
oy

¼~u � ~r/: ð2:3Þ

For an incompressible medium we can also write

ðConvÞ ) ðDivÞ � ou/
ox

þ ov/
oy

¼ ~r � ð~u/Þ; ð2:4Þ

or

ðConvÞ ) ðSkewÞ � 1

2
u
o/
ox

�
þ v

o/
oy

�
þ 1

2

ou/
ox

�
þ ov/

oy

�
¼ 1

2
ðAdvÞ þ 1

2
ðDivÞ; ð2:5Þ

since for an incompressible flow the continuity equation ~r �~u ¼ 0 holds. Here, (Adv) is referred to as the

advection form, (Div) is the divergence form and (Skew) the skew-symmetric form. These definitions agree

with those in [5].

Gauss� theorem states that a transport operator is spatially conservative if it can be expressed in the

divergence form. In the following, we will show that the skew-symmetric form conserves variance of the
scalar /, irrespective of whether ~r �~u ¼ 0 holds.

The transport equation for the variance results from multiplying Eq. (2.1) with /:

/
o/
ot

þ /ðConvÞ ¼ /ðDiff Þ )
o 1

2
/2

ot
þ /ðConvÞ ¼ /ðDiff Þ: ð2:6Þ

Next, for the three different forms, we focus on the convection operator multiplied with /:

/ðAdvÞ � / u
o/
ox

�
þ v

o/
oy

�
¼ ~r � ~u

1

2
/2

� �
� 1

2
/2ð~r �~uÞ; ð2:7Þ
/ðDivÞ � /
ou/
ox

�
þ ov/

oy

�
¼ ~r � ~u

1

2
/2

� �
þ 1

2
/2ð~r �~uÞ; ð2:8Þ
/ðSkewÞ � /
1

2
ðAdvÞ

�
þ 1

2
ðDivÞ

�
¼ ~r � ~u

1

2
/2

� �
ð2:9Þ

We can now conclude the following. Eq. (2.9) shows that the skew-symmetric form of the convection

operator can be written in divergence form in the transport equation for the variance of the scalar /.
Therefore, the skew-symmetric form conserves variance, irrespective of the presence of divergence of the
velocity vector, ~r �~u. In the continuous case, ~r �~u ¼ 0 holds for an incompressible flow. However, for

compressible flows, for the depth-averaged shallow-water equations (free-surface flows) or for ill-converged

pressure corrections, ~r �~u 6¼ 0 holds. For these cases the variance-conserving properties of the advection

and divergence form of the convection operator are not guaranteed. Even if in the continuous case
~r �~u 6¼ 0 holds, then in finite difference forms the divergence may not necessarily be zero at all times. If the

latter deviation occurs the discretized versions of the advective and divergence form of the convection term

violate the conservation of variance where the skew-symmetric does not.

In the next section, the existing spatially variance-conserving convection scheme [1] is written in our
notation, aiming at a clear distinction between the flux terms ~u and the transported quantity /.
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3. Existing skew-symmetric spatial discretization

Piacsek and Williams [1] propose a skew-symmetric discretization for the convection term on a staggered
grid. This scheme is spatially variance-conserving and has the following form for grid point ði; jÞ, see also

Fig. 1:

ðSkewÞD;ði;jÞ �
uiþ1=2;j/iþ1;j � ui�1=2;j/i�1;j

2Dx
þ
vi;jþ1=2/i;jþ1 � vi;j�1=2/i;j�1

2Dy
; ð3:1Þ

where the subscript D; ði; jÞ denotes the discrete approximation of (Skew) in the grid-point (i; j).
Fig. 1 shows a two-dimensional grid and a computational cell with the staggered arrangement of the

velocity vectors and scalar positions. For clarity reasons we restrict ourselves to the two-dimensional case.

The three-dimensional scheme is a simple extension of the two-dimensional scheme. In addition, we con-

sider just equidistant grids.

In [5] and its notation, it is stated that a term is conservative in the discrete system if it can be written as

Qð/Þ ¼
d1 1Fjð/Þ
� �
d1xj

þ
d2 2Fjð/Þ
� �
d2xj

þ � � � ð3:2Þ

where, in [5], the finite-difference operator (second-order central) with respect to x is defined as

dn/
dnx

����
x;y

¼ /ðxþ nDx=2; yÞ � /ðx� nDx=2; yÞ
nDx

: ð3:3Þ

Morinishi et al. [5] show that the discrete skew-symmetric form of the convection operator, analog to the

definition in Eq. (3.1), can be rewritten in the form (3.2) in the transport equation of the kinetic energy.

However, Morinishi et al. experience by numerical experiments that using this form for the convection

terms in the Navier–Stokes equations still violates the conservation of kinetic energy. They conclude that

this violation is due to their time integration method (third-order Runge–Kutta).
i i+1i-1

j

j-1

j+1

2∆y

2∆x

Fig. 1. 2D computational cell of the skew-symmetric convection of a scalar property.
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In the following section, we present a numerical scheme for the convection operator that is variance-

conserving not only in space but in time as well. This is a new scheme in which we strive for a clear def-

inition of the time levels of the flux terms and the convected quantity.
4. Derivation of space–time variance-conserving convection scheme

An essential difference between previously cited papers and our derivation below is the following. We

derive the space–time variance-conserving transport scheme directly from the discretized transport equa-

tion for the variance of a scalar quantity in absence of diffusion, sources and sinks. This is in contrast to the

method of for example Piacsek and Williams [1], who use the existing advective and divergence dicretization
form of the convection operator in the transport equation for a scalar quantity to derive their spatial

variance-conserving scheme.

For deriving our transport scheme, conservative both in space as well as in time – in the following re-

ferred to as �the space–time variance-conserving scheme� – we must include time levels in the scalar mul-

tiplication of Eq. (2.6). The latter multiplication is repeated below. In the following, we focus solely on the

convection term and omit the diffusion term:

/
o/
ot

�
þ ðConvÞ ¼ 0

�
)

o 1
2
/2

ot
þ /ðConvÞ ¼ 0: ð2:6Þ

This multiplication is repeated below on a discrete space–time level, restricted to a single spatial dimension

while using the second-order central time discretization in a single-step fashion:

o/
ot

� �nþ1=2

i

� /nþ1
i � /n

i

Dt
¼ �ðConvÞD;i: ð4:1Þ

For obtaining the discretized transport equation (2.6) for the variance 1
2
/2, Eq. (4.1) is multiplied with some

discrete multiplier /�;i, where the first subscript refers to a yet unknown time level but this level follows

from the following construction. First, we demand that the following multiplication:

/�;i
/nþ1

i � /n
i

Dt

�
¼ � ðConvÞD;i

�

should comply with

1
2
ð/nþ1

i Þ2 � 1
2
ð/n

i Þ
2

Dt
¼ �/�;iðConvÞD: ð4:2Þ

From comparing the left-hand side of (4.2) with the former equation follows that the discrete multiplier /�;i
is to be defined as

/�;i �
/nþ1

i þ /n
i

2
: ð4:3Þ

Eq. (4.3) shows clearly that both the position in space as well as in time of the values of / used in the
definition of /�;i are essential and this restricts the definition of the convection operator because

/�;iðConvÞD;i ¼
/nþ1

i þ /n
i

2
ðConvÞD;i ð4:4Þ
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must be written in divergence form for obtaining a variance-conserving flux, i.e.

/�;iðConvÞD;i ¼ ~r � ~u
1

2
/2

� �� �
D;i

ð4:5Þ

must hold. Consequently, for ðConvÞD;i we define

ðConvÞD;i ¼
1

/�;i
~r � ~u

1

2
/2

� �� �
D;i

; ð4:6Þ

where the undesired division by /�;i should be eliminated through the following definition of the convection

operator.

Using the second-order central discretization form for Convð ÞD;i in Eq. (4.5), we obtain

/�;iðConvÞD;i ¼
uiþ1=2

1
2
/2

iþ1=2 � ui�1=2
1
2
/2

i�1=2

Dx
¼ uiþ1=2

2Dx
/2

iþ1=2 �
ui�1=2

2Dx
/2

i�1=2: ð4:7Þ

In view of the undesired division by /�;i we want to extract /�;i from both terms on the right-hand side of

Eq. (4.7), i.e.

/2
iþ1=2 � /�;i � UiðþÞ ¼ /nþ1

i þ /n
i

2
� UiðþÞ;

/2
i�1=2 � /�;i � Uið�Þ ¼ /nþ1

i þ /n
i

2
� Uið�Þ:

ð4:8Þ

The form of the two unknown variables UiðþÞ and Uið�Þ is dictated by the second requirement for conser-
vation, namely the cancellation of the flux defined at the faces of adjacent cells. Additionally to the defi-

nition in (4.8), the following must hold when shifting the operators one Dx to the negative x-direction:

/2
i�1=2 � /�;i�1 � Ui�1ðþÞ ¼ /nþ1

i�1 þ /n
i�1

2
� Ui�1ðþÞ;

/2
i�3=2 � /�;i�1 � Ui�1ð�Þ ¼ /nþ1

i�1 þ /n
i�1

2
� Ui�1ð�Þ:

ð4:9Þ

The requirements expressed by (4.8) and (4.9) yield

Uið�Þ ¼ /�;i�1 ¼
/nþ1

i�1 þ /n
i�1

2
: ð4:10Þ

and likewise

UiðþÞ ¼ /�;jþ1 ¼
/nþ1

iþ1 þ /n
iþ1

2
: ð4:11Þ

Consequently, the substitution of (4.8) into (4.7) and subsequently dividing by /�;i yields our definition of

the variance-conserving space–time discretization of the convection operator (Conv):

ðConvÞD;i ¼
uiþ1=2

/nþ1
iþ1

þ/n
iþ1ð Þ

2
� ui�1=2

/nþ1
i�1

þ/n
i�1ð Þ

2

2Dx
¼

uiþ1=2 /nþ1
iþ1 þ /n

iþ1

� �
� ui�1=2 /nþ1

i�1 þ /n
i�1

� �
4Dx

: ð4:12Þ

Eq. (4.12) presents our new discrete space–time variance-conserving convection operator. Apparently, the

time level of the flux terms u is of no relevance to the conservation of variance and can thus be chosen
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arbitrarily, if the purpose is conservation of variance. This conclusion is essential because extension of Eq.

(4.12) to~u � ~r~u allows for solving a linear set of discretized momentum equations. In addition, our scheme

(4.12) is derived directly from the discretized transport equation for scalar variance. The latter invokes
essential definitions for the time levels in (4.12) and it is this neglect of time levels in previously published

spatially variance-conserving schemes that warranted us whether these schemes are variance-conserving in

time.

Note that the time-centred average of the convected quantity in the space–time variance-conserving

operator (4.12) is the single but essential difference with respect to the skew-symmetric form (3.1) of Piacsek

and Williams [1]. In other words, the variance-conserving space–time discretization, as defined in Eq. (4.12),

represents a Crank–Nicholson time integration and thus involves the implicit solution of

/nþ1
i � /n

i

Dt
¼ �

uiþ1=2 /nþ1
iþ1 þ /n

iþ1

� �
� ui�1=2 /nþ1

i�1 þ /n
i�1

� �
4Dx

) /nþ1
i � /n

i

Dt

¼ � 1

2

uiþ1=2/
nþ1
iþ1 � ui�1=2/

nþ1
i�1

2Dx

"
þ 1

2

uiþ1=2/
n
iþ1 � ui�1=2/

n
i�1

2Dx

#
; ð4:13Þ

or extended to two dimensions

/nþ1
i;j � /n

i;j

Dt
¼ �

uiþ1=2;j /nþ1
iþ1;j þ /n

iþ1;j

� 	
� ui�1=2;j /nþ1

i�1;j þ /n
i�1;j

� 	
4Dx

�
vi;jþ1=2 /nþ1

i;jþ1 þ /n
i;jþ1

� 	
� vi;j�1=2 /nþ1

i;j�1 þ /n
i;j�1

� 	
4Dy

: ð4:14Þ

The previous procedure, especially Eqs. (4.8)–(4.11), shows that the time levels used in the convection

operator must equal those used in /� as well as those applied in the discretized temporal derivative. This

implies that a strictly variance-conserving numerical scheme, at least derived by our procedure using the

transport Eq. (2.6) for 1
2
/2, will always be implicit. In other words, using the procedure described in this

section, it is not possible to define a discretization in space alone that is strictly variance conserving in time.

One always has to include the time levels in the discretization of the convective terms and therefore the time

integration method is fixed simultaneously.

In the following section we discuss with more detail the complication with respect to the time levels
needed for obtaining the space–time variance-conserving convection operator. In view of its feasibility for

our shallow-water solver, as given in the introduction to this paper, we investigate ADI for (4.14) and

explicit time integration as fair alternatives/compromises.
5. Approximations to the space–time variance-conserving convection scheme

The first part of this section clarifies why explicit temporal integration cannot yield variance conser-
vation in time, at least from the viewpoint of the derivation strategy presented in the previous section. The

second part of this section discusses various approximations to (4.14) with the objective of seeking a

compromise between accuracy in variance conservation, stability and computational costs.

An explicit method that is strictly variance-conserving has not been found and this can be explained by

the following figures.

Fig. 2(a) presents the values of / used in the definition of the variance-conserving convection scheme.

It shows that the values needed to define /2
i�1=2 are identical for Eq. (4.8), which gives the definition on



Fig. 2. (a) Values of / used in the space–time variance-conserving scheme. (b) Values of / used in Euler forward explicit scheme.
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x ¼ i, and Eq. (4.9), which gives the definition on x ¼ i� 1, namely the values of / that are enclosed in

the square . When the same is done for the Euler forward explicit scheme, in Fig. 2(b), we see that the

values needed to define /2
i�1=2 are not identical. They are enclosed by for the definition on x ¼ i and

enclosed by for the definition on x ¼ i� 1. Therefore, in the Euler forward explicit scheme, the

definition of /2
i�1=2 differs for fluxes of adjacent cells, which does not yield a variance-conserving definition

in time. The previous conclusion holds for any other explicit temporal integration scheme and this ends

the first part of this section.

In the remaining part of this section we present our considerations for finding approximations to the

space–time variance-conserving form of the transport equation.

The formal approach is solving (4.14), i.e. Crank–Nicholson integration, directly. The set (4.14) is un-

conditionally stable, the single limitation on the time step is dictated by the wish to avoid errors in variance

conservation by amplification of machine inaccuracy.

The computationally less costly alternative is using an iterative solver in the Crank–Nicholson inte-
gration (4.14) and because (4.14) is unconditionally stable, the truncation errors due to the convergence

criterion on this solver may only endanger variance conservation in time. Nevertheless, the next section

shows that the latter danger is not dominant and it appears that, for fair convergence conditions, just

machine accuracy matters.
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In two dimensions, ADI is unconditionally stable and it yields just tridiagonal systems that are solved

directly and nearly as efficient as explicit methods. The difference in variance conservation by ADI and by

solving (4.14) is the price to pay for this compromise. In view of the following alternatives the compromise
of using ADI rather than (4.14) appears optimal for implementation in our shallow-water solver. In this

solver we already use ADI for solving the coupled set of mass-conservation and momentum equations, see

also the introduction to this paper.

In contrast to [5] we do not even consider Runge–Kutta integration because of its ambiguity of the

boundary conditions on the non-physical velocity field at the intermediate fractional time levels. The reason

is that in shallow-water applications, we allow a multitude of open boundary conditions including weakly

reflective or Riemann conditions for long-wave motions (tides).

In DNS and LES, the second- and third-order explicit Adams–Bashforth schemes are popular. However,
these schemes are in principle dissipative as well as unstable for inviscid flows or impose time-step limi-

tations depending on the subgrid-scale eddy viscosity in (H)LES. We do not favor a turbulence-dependent

and thus a time-dependent time step in view of our available post-processing data analysis as well as the

coupling strategy to e.g. our off-line biochemical codes. Nevertheless, we apply the second-order explicit

Adams–Bashforth scheme in a non-diffusive simulation just to demonstrate that variance conservation does

not guarantee stability, as suggested in [1].

An equally unattractive alternative would be the explicit leap-frog scheme although it is non-dissipative

but stable only for inviscid flows and may require temporal smoothing of wiggles that destroy mass con-
servation in our simulations. The leap-frog scheme in a non-diffusive simulation is included here for

comparison only.

The leap-frog, the two-step Adams–Bashforth and the ADI time-integration schemes are defined below

and together with the Crank–Nicholson scheme in (4.14), these are used in the demonstration presented in

the next section.

The Crank–Nicholson scheme in Eq. (4.14) can be written symbolically as

/nþ1
i;j � /n

i;j

Dt
� o/

ot

� �nþ1=2

i;j

¼ 1

2
Cnþ1

i;j þ 1

2
Cn

i;j ð5:1Þ

with

Ck
i;j ¼ �

uiþ1=2;j/
k
iþ1;j � ui�1=2;j/

k
i�1;j

2Dx
�
vi;jþ1=2/

k
i;jþ1 � vi;j�1=2/

k
i;j�1

2Dy
; k ¼ 0; 1; 2 . . . ; nmax:

The leap-frog scheme then reads

/nþ1
i;j � /n�1

i;j

2Dt
� o/

ot

� �n

i;j

¼ Cn
i;j; ð5:2Þ

being equivalent to the leap-frog scheme used in [1].

The two-step Adams–Bashforth scheme is defined as follows:

/nþ1
i;j � /n

i;j

Dt
� o/

ot

� �nþ1=2

i;j

¼ 3

2
Cn

i;j �
1

2
Cn�1

i;j ; ð5:3Þ

which is equivalent to the one-leg method derived in [4] for a linear problem. Both for the leap-frog scheme

and the two-step Adams–Bashforth scheme the initiation at n ¼ 0 was carried out with an implicit Euler

forward scheme, by setting /�1
i;j ¼ /0

i;j and C�1
i;j ¼ C0

i;j, respectively.
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The ADI scheme is constructed as follows. At the first half time-step, the x-direction of the convection

term is taken at the implicit time-level and the y-direction at the explicit level:

/nþ1=2
i;j � /n

i;j
1
2
Dt

¼ �
uiþ1=2;j/

nþ1=2
iþ1;j � ui�1=2;j/

nþ1=2
i�1;j

2Dx
�
vi;jþ1=2/

n
i;jþ1 � vi;j�1=2/

n
i;j�1

2Dy
: ð5:4Þ

At the second half time-step, the time levels are interchanged:

/nþ1
i;j � /nþ1=2

i;j
1
2
Dt

¼ �
uiþ1=2;j/

nþ1=2
iþ1;j � ui�1=2;j/

nþ1=2
i�1;j

2Dx
�
vi;jþ1=2/

nþ1
i;jþ1 � vi;j�1=2/

nþ1
i;j�1

2Dy
: ð5:5Þ

The following section presents and discusses a numerical test with these schemes.
6. Numerical test: forced convection of a scalar

For the purpose of demonstration, we consider the forced convection of a scalar / by a two-dimensional

frozen velocity field in a closed square domain, which is described by a linear, variable coefficient, partial

differential equation for /:

o/
ot

þ Uðx; yÞ o/
ox

þ V ðx; yÞ o/
oy

¼ 0; ð6:1Þ

where

U ¼ U0 sinðNpxÞ cosðNpyÞ;

V ¼ �U0 cosðNpxÞ sinðNpyÞ:
ð6:2Þ

Here U0 has a constant value and the parameter N can be used to vary the number of vortices that are

represented by Eq. (6.2). The use of capitals for the velocity components indicates the time-independence of

the velocity field.

Eq. (6.1) describes the process of the continuous roll up of a scalar distribution and transport of its

spectral energy density to the large wave numbers in the wave-spectrum, up to the limit of the spatial

resolution. By using the space–time variance-conserving scheme in this specific equation, we put it to the

ultimate test, because convection is the only mechanism present and the variance-spectrum can be evaluated
from the smallest to the largest resolvable wave numbers.

If the velocity field ~u and the scalar / each have different wave numbers or are based on more than a

single wave number then temporal integration of the convective operator~u � ~r/ or the advective operator
~u � ~r~u redistributes energy in wave number space while conserving the volume-integrated energy, see e.g.

[8]. Through temporal integration, a part of the original spectral-energy density contained in ~u or / is

transferred to increasingly larger wave numbers. The latter process then produces increasingly sharper

gradients in space. This process holds for both the convective or the advective operator and for simplicity

therefore this paper uses the ~u � ~r/ as illustration.
The velocity components in Eq. (6.2) satisfy ~r � ~U ¼ 0 in their continuous form, but upon finite dif-

ferencing introduce divergence errors �10�7 on the unit square 06 x6 1, 06 y6 1, covered by an equi-

distant 51� 51 mesh, for U0 ¼ 2.
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In view of Eq. (4.14), the space–time variance-conserving scheme for Eq. (6.1) reads

/nþ1
i;j � /n

i;j

Dt
þ
Uiþ1=2;j /nþ1

iþ1;j þ /n
iþ1;j

� 	
� Ui�1=2;j /nþ1

i�1;j þ /n
i�1;j

� 	
4Dx

þ
Vi;jþ1=2 /nþ1

i;jþ1 þ /n
i;jþ1

� 	
� Vi;j�1=2 /nþ1

i;j�1 þ /n
i;j�1

� 	
4Dy

¼ 0: ð6:3Þ

Eq. (6.3) is solved on the unit square 06 x6 1, 06 y6 1, with closed boundaries and covered by an
equidistant 51� 51 staggered grid. We set the flux through the boundaries equal to zero. In the simulations,

N ¼ 1 in Eq. (6.2) is used, yielding four counter-rotating vortices on the square domain.

The volume-integrated variance is computed at every time step and compared to its initial value. These

are defined by

varðtÞ ¼ 1

M

X
i;j

1

2
/2

i;jðtÞ; varðt ¼ 0Þ ¼ varð0Þ ¼ 1

M

X
i;j

1

2
/2

i;jðt ¼ 0Þ; ð6:4Þ

where M is the number of grid-points.

The initial variance is determined by the initial distribution of the scalar. We have chosen an axi-
symmetric profile with zero mean and linear in the distance to the domain centre.

The Crank–Nicholson scheme in Eq. (6.3), the leap-frog scheme in Eq. (5.2), the two-step Adams–

Bashforth scheme in Eq. (5.3) and the ADI scheme in Eqs. (5.4) and (5.5) are tested and compared with a

mixed second-order central – third-order upwind ADI scheme, that is currently used in our shallow water

solver for scalar transport. This scheme is defined below, see also [6].

First-half time step, implicit third-order upwind in x-direction, explicit second-order central in y-direction:

/nþ1=2 � /n

1
2
Dt

þ UD3rd upw
x /nþ1=2

n o
þ VD2nd central

y /nf g ¼ 0; ð6:5Þ

second-half time step, implicit third-order upwind in y-direction, explicit second-order central in x-direc-
tion:

/nþ1 � /nþ1=2

1
2
Dt

þ UD2nd central
x /nþ1=2

n o
þ VD3rd upw

y /nþ1

 �

¼ 0; ð6:6Þ

where Dx and Dy are difference operators with respect to x and y, respectively.
To maintain a clear distinction between this ADI scheme, that uses either a second-order central or a

third-order upwind scheme for the convection terms and the one we defined in the previous section in Eqs.

(5.4) and (5.5), in the following we refer to these two schemes as �third-order upwind ADI� and �SS ADI�
(skew-symmetric ADI), respectively.

Fig. 3 presents the temporal development of the scalar-field during the test without physical diffusion. At
two instants (the initial condition and at time ¼ 2, see Eq. (6.9)) in time this figure shows snapshots taken

during the simulation.

Fig. 4 shows the development of the variance varðtÞ=varð0Þ in the computational domain for the five

different space–time iterations:

• We see that CN (the Crank–Nicholson integration method – space–time variance-conserving scheme)

produces a straight line at a value of varðtÞ=varð0Þ ¼ 1.

• The explicit LF scheme (leap-frog) wiggles around a value slightly higher than unity, which can be ex-

plained by the following.



Fig. 3. Snapshots of the scalar distribution and the frozen velocity field during the simulation at dimensionless time (see Eq. (6.9)):

(a) time¼ 0 and (b) time¼ 2.
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Consider the semi-discrete formulation of leap-frog temporal integration:

/ðnþ1Þ � /ðn�1Þ

2Dt
¼~u � ~r/ðnÞ: ð6:7Þ

Assuming the RHS of (6.7) is discretized by a spatially variance-conserving advection scheme then pre-

multiplication of (6.7) by /ðnÞ and subsequently integration over a closed volume yieldsZ
/ðnÞ/ðnþ1Þ � /ðnÞ/ðn�1ÞdV ¼ 0: ð6:8Þ

A class of solutions obeying (6.8) reads /ðnÞ ¼ aðxÞ þ ð�1ÞnbðxÞ so that f/ðnÞg2 ¼ a2ðxÞ þ b2ðxÞþ
2ð�1ÞnaðxÞbðxÞ holds. The latter and possibly also its volume-integral yields an oscillatory energy level that

may be the cause of the wiggling energy levels in Fig. 4 for the leap-frog scheme.
• The SS ADI scheme also deviates a little from unity.

• The mixed central-third-order upwind ADI scheme: all three time integration methods mentioned above

conserve variance far better than the mixed central-third-order upwind ADI scheme.

• The AB (two-step Adams–Bashforth scheme) becomes unstable after approximately one dimensionless

time unit, for a definition see Eq. (6.9), which illustrates that the use of a spatially variance-conserving

scheme does not guarantee a stable simulation; one definitely has to take into account the properties of

the time integration method.

Fig. 4 presents varðtÞ=varð0Þ as a function of the dimensionless time, defined by

time ¼ nDt
L=U0

; ð6:9Þ

where n is the number of time steps, L is the width of the computational domain and U0 the amplitude of the

velocity, see Eq. (6.2). We found that one dimensionless time unit (6.9) is proportional to one full rotation
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of a fluid particle in a vortex. For the Courant number, cfl ¼ U0 � Dt=Dx ¼ 0:8 holds in the computations

presented in Fig. 4.
In Table 1 some properties are given to illustrate the differences between four of the five space–time-

iterations in the simulation of Fig. 4. In this table, the following distinction is made: first, the two different

spatial discretizations (SS ADI and third-order upwind ADI) are compared. Second, a comparison between

the three different time iteration methods (CN, LF and SS ADI) is made. The two-step Adams–Bashforth

method is omitted in this table, because it is unstable for pure advection. The properties that are presented

in Table 1 are

DV ¼
Pnmax

n¼1 ½varðnDtÞ � varð0Þ�=varð0Þ
nmax

; ð6:10Þ
DVmax ¼ maxfjvarðtÞ � varð0Þj=varð0Þg; ð6:11Þ

where nmax is the number of time steps in the simulation.

Fig. 4 and Table 1 show that the strictly variance-conserving Crank–Nicholson scheme has indeed far

better conservation properties than the other schemes.

To illustrate that the conservation of variance of CN is independent of the time-step used, Fig. 5 presents
jDV j and DVmax for CN for three different time steps on a double logarithmic scale. Also, a line proportional

to Dt2 is drawn, because the Crank–Nicholson time-stepping method used in the variance-conserving

scheme is second-order in time. Obviously, there is no correlation between the lines representing jDV j and
Dt2, nor between DVmax and Dt2.
Table 1

Values given in Eqs. (6.10) and (6.11) for four time-iteration methods for cfl¼ 0.8

DV DVmax

SS ADI )0.00588 0.01008 Same time-integration, different spatial discretization

3rd upw )0.83140 0.9870

CN 1.006� 10�14 2.580� 10�14 Same spatial discretization, different time-integration

LF 0.00324 0.04770

SS ADI )0.00588 0.01008
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From this section we can conclude that our space–time variance-conserving scheme (4.14) is indeed

strictly variance-conserving, i.e. there is no correlation between the time-step and the violation of variance

conservation.
In the following section, we discuss another interesting and important property of the skew-symmetric

and the space–time variance-conserving convection schemes.
7. Conditions for the consistency of the skew-symmetric and the space–time variance-conserving convection

schemes

In the following, we will discuss the consistency of the skew-symmetric and the space–time variance-
conserving convection schemes. We will show that these schemes are not unconditionally consistent.

The skew-symmetric scheme as defined in Eq. (3.1) and the variance-conserving scheme as defined in Eq.

(4.12) are not unconditionally consistent. This can be shown by Taylor expansions of both expressions.

First consider the Taylor expansion of the expression in Eq. (3.1), with respect to (i; j):

ðSkewÞD;ði;jÞ �
uiþ1=2;j/iþ1;j � ui�1=2;j/i�1;j

2Dx
þ
vi;jþ1=2/i;jþ1 � vi;j�1=2/i;j�1

2Dy

¼ u
o/
ox

þ v
o/
oy

þ 1

2
/

ou
ox

�
þ ov
oy


þOðDx2;Dy2Þ: ð7:1Þ

Eq. (7.1) shows that the skew-symmetric scheme is consistent only if ~r �~u ¼ 0 holds.

For the variance-conserving scheme in one dimension we have the following:

ðConvÞD;i
uiþ1=2 /nþ1

iþ1 þ /n
iþ1

� �
� ui�1=2 /nþ1

i�1 þ /n
i�1

� �
4Dx

¼ u
o/
ox

þ 1

2
/
ou
ox

þOðDx2;Dt2Þ ð7:2Þ

Eq. (7.2) shows that for one dimension, the variance-conserving scheme cannot be consistent, because in

general 1
2
/ ou

ox 6¼ 0 holds. For consistency, we need a multi-dimensional formulation that can guarantee zero
divergence, i.e. ~r �~u ¼ 0. The same goes for the skew-symmetric scheme in Eq. (3.1).

From the previous, we can conclude that the skew-symmetric scheme and the time–space variance-

conserving scheme are consistent only for flows where ~r �~u ¼ 0 holds, i.e. flows that are multi-dimensional
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and that are divergence-free in the continuous formulation. The absence of divergence on the discrete level

is not necessary for consistency, nor for the conservation of variance, as stated before in the argumentation

below Eq. (2.9).
This concludes the derivation of the scheme based on variance conservation of a scalar property.

In the next section, we present the space–time kinetic energy-conserving scheme for the inviscid Burgers�
equation. In our opinion, we present a clearer definition of the kinetic energy conserving scheme than

Morinishi et al. [5], thanks to the clear distinction between the flux terms and the convected quantity.
8. The space–time kinetic energy-conserving scheme

In this section, we will extend the strictly variance-conserving scheme as defined in Eq. (4.14) to an

equivalent scheme for the convection terms in the Navier–Stokes equations.

The skew-symmetric form for the convection terms in the Navier–Stokes equations results from Fig. 1,

by shifting the computational cell 1
2
Dx for the x-momentum equation and 1

2
Dy for the y-momentum

equation, and applying spatial central averaging:

x-momentum:

u
ou
ox

�
þ v

ou
oy

�
iþ1=2;j

� ðSkewðxÞÞD;ðiþ1=2;jÞ

¼
�uxiþ1;juiþ3=2;j � �uxi;jui�1=2;j

2Dx
þ
�vxiþ1=2;jþ1=2uiþ1=2;jþ1 � �vxiþ1=2;j�1=2uiþ1=2;j�1

2Dy
ð8:1Þ

y-momentum:

u
ov
ox

�
þ v

ov
oy

�
i;jþ1=2

� SkewðyÞð ÞD; i;jþ1=2ð Þ

¼
�uyiþ1=2;jþ1=2viþ1;jþ1=2 � �uyi�1=2;jþ1=2vi�1;jþ1=2

2Dx
þ
�vyi;jþ1vi;jþ3=2 � �vyi;jvi;j�1=2

2Dy
: ð8:2Þ

The average values – interpreted as fluxes through the boundaries of the computational cell, see Fig. 6 – are

defined as follows:

�axi;j ¼
1

2
ðaiþ1=2;j þ ai�1=2;jÞ; �ayi;j ¼

1

2
ðai;jþ1=2 þ ai;j�1=2Þ: ð8:3Þ

Fig. 6(a) and (b) present the computational cells for the convection terms in the x and y-momentum

equations.

As derived before in Section 4, the time level of the flux terms does not have to be specified for creating a

kinetic energy-conserving convection scheme. Therefore, the kinetic energy-conserving scheme for what is

now the two-dimensional inviscid Burgers� equation is defined as

unþ1
iþ1=2;j � uniþ1=2;j

Dt
þ

�uxiþ1;j

� 	h
unþ1
iþ3=2;j þ uniþ3=2;j

� 	
� �uxi;j
� 	h

unþ1
i�1=2;j þ uni�1=2;j

� 	
4Dx

þ
�vxiþ1=2;jþ1=2

� 	h
unþ1
iþ1=2;jþ1 þ uniþ1=2;jþ1

� 	
� �vxiþ1=2;j�1=2

� 	h
unþ1
iþ1=2;j�1 þ uniþ1=2;j�1

� 	
4Dy

¼ 0; ð8:4Þ



ii-1

j

j-1

j+1

i+1

2∆y

2∆x

i+1i-1

j

j-1

j+1

i

2∆x

2∆y

(a) (b)
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vnþ1
i;jþ1=2 � vni;jþ1=2

Dt
þ

�uyiþ1=2;jþ1=2

� 	h
vnþ1
iþ1;jþ1=2 þ vniþ1;jþ1=2

� 	
� �uyi�1=2;jþ1=2

� 	h
vnþ1
i�1;jþ1=2 þ vni�1;jþ1=2

� 	
4Dx

þ
�vyi;jþ1

� 	h
vnþ1
i;jþ3=2 þ vni;jþ3=2

� 	
� �vyi;j
� 	h

vnþ1
i;j�1=2 þ vni;j�1=2

� 	
4Dy

¼ 0; ð8:5Þ

where the time level h can be chosen arbitrarily, but consistently.
9. Conclusions

We can recapitulate our findings as follows:

A strictly (space–time) variance-conserving, or kinetic-energy conserving scheme for the convection

terms contains the same time levels as the ones used in the time-derivative term. This means that the
following must hold:

/p
i;j � /q

i;j

ðp � qÞDt ¼ � 1

2
Cp

i;j

�
þ 1

2
Cq

i;j

�
; ð9:1Þ

where Ck
i;j is the skew-symmetric scheme for the convection term for a scalar quantity, as proposed by

Piacsek and Williams [1], but with time levels assigned to the convected quantity:

Ck
i;j ¼

uhiþ1=2;j/
k
iþ1;j � uhi�1=2;j/

k
i�1;j

2Dx
þ
vhi;jþ1=2/

k
i;jþ1 � vhi;j�1:2/

k
i;j�1

2Dy
; ð9:2Þ

or the skew-symmetric scheme for the convection term for a vector quantity, see e.g. [5], with time-levels

assigned to the convected quantity
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Ck
xðiþ1=2;jÞ ¼

�uxiþ1;j

� 	h
ukiþ3=2;j � �uxi;j

� 	h
uki�1=2;j

4Dx
þ

�vxiþ1=2;jþ1=2

� 	h
ukiþ1=2;jþ1 � �vxiþ1=2;j�1=2

� 	h
ukiþ1=2;j�1

4Dy
;

Ck
yði;jþ1=2Þ ¼

�uyiþ1=2;jþ1=2

� 	h
vkiþ1;jþ1=2 � �uyi�1=2;jþ1=2

� 	h
vki�1;jþ1=2

4Dx
þ

�vyi;jþ1

� 	h
vki;jþ3=2 � �vyi;j

� 	h
vki;j�1=2

4Dy
:

ð9:3Þ

Here the time-level h is not prescribed and can be chosen arbitrarily but consistently, which has the ad-

vantage that the discrete equations of the non-linear convection terms yield a linear system to solve.

Considering the definition of the material derivative

D

Dt
/ ¼ o

ot

�
þ~u � ~r

�
/ �

/p
i;j � /q

i;j

ðp � qÞDt þ ConvðpþqÞ=2
D;ði;jÞ

� 	
/ ¼ 0; ð9:4Þ

where ðConvðpþqÞ=2
D;ði;jÞ Þ/ is the approximation of ð~u � ~rÞ at time-level ðp þ qÞ=2 and at ðx; yÞ ¼ ði; jÞ in space, it

is no surprise that the time levels of the convected quantity / have to be the same in the time term o=ot and
the convective term ~u � ~r and that the time levels of the flux term ~u can be chosen.

Our space–time variance-conserving scheme (4.12) is strictly variance-conserving, i.e. there is no cor-

relation between the time-step and the violation of variance conservation. The leap-frog scheme wiggles

around a value slightly higher than unity for the non-diffusive problem tested in Section 6. However, in
practical problems one will always have to deal with diffusion or dissipation and in this case the leap-frog

scheme becomes unusable. The two-step Adams–Bashforth scheme becomes unstable for the non-diffusive

problem. For diffusive problems, the two-step Adams–Bashforth scheme can be stable, but it has a time-

step restriction. The SS ADI scheme is a compromise between the strictly variance-conserving Crank–

Nicholson scheme and the mixed central-third-order upwind ADI scheme. It has fairly good conservation

properties and it is unconditionally stable.

According to Section 7, the variance-conserving scheme is second order in space for equidistant grids. In

the manner of Richardson extrapolation, see also [4] and [5], higher order schemes can be constructed.
Furthermore, our analysis applies to equidistant grids only. When the variance-conserving scheme is used

on non-equidistant grids, we either loose space-accuracy while maintaining strict variance conservation, or

introduce errors in variance conservation.
10. A final consideration

In this paper, we showed that the strictly variance-conserving Crank–Nicholson scheme is the best choice
when it variance conservation is important. In the civil engineering problems however, the following

considerations are essential.

In the shallow-water simulations, two Courant numbers play a dominant role. For a consistent space–

time representation of interacting vortices, the Courant number CU for advection should be less than unity.

The latter upper limit allows for an explicit temporal integration. In nearly all applications, however, the

Froude number (F ) is significantly less than unity so that the Courant number CBT for barotropic or long-

wave modes easily exceeds unity (CBT ¼ CU � F �1). Consequently, the large CBT (>1) requires an implicit

coupling between the conservation equation, expressed in the free-surface elevation, and the related hy-
drostatic-pressure gradient in the horizontal momentum equations, for details of this procedure see [7] and

references therein. Solving these coupled conservation and momentum equations with a Crank–Nicholson

scheme introduces a highly complex stencil, whereas an ADI temporal integration method yields a much

more simple tridiagonal system. With this in mind, and also because of our experience with ADI, which is
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the method currently used in our shallow-water solver, we consider ADI as a computationally optimal

compromise of the ultimate variance-conserving method that we present in this paper.
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